Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus.
نویسندگان
چکیده
Surface proteins of Gram-positive bacteria play important roles during the pathogenesis of human infections and require sortase for anchoring to the cell-wall envelope. Sortase cleaves surface proteins at the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine (T) and the amino group of cell-wall crossbridges. The NMR structure of sortase reveals a unique beta-barrel structure, in which the active-site sulfhydryl of cysteine-184 is poised for ionization by histidine-120, presumably enabling the resultant thiolate to attack the LPXTG peptide. Calcium binding near the active site stimulates catalysis, possibly by altering the conformation of a surface loop that recognizes newly translocated polypeptides. The structure suggests a mechanistic relationship to the papain/cathepsin proteases and should facilitate the design of new antiinfective agents.
منابع مشابه
Engineering the substrate specificity of Staphylococcus aureus Sortase A. The beta6/beta7 loop from SrtB confers NPQTN recognition to SrtA.
The Staphylococcus aureus transpeptidase Sortase A (SrtA) anchors virulence and colonization-associated surface proteins to the cell wall. SrtA selectively recognizes a C-terminal LPXTG motif, whereas the related transpeptidase Sortase B (SrtB) recognizes a C-terminal NPQTN motif. In both enzymes, cleavage occurs after the conserved threonine, followed by amide bond formation between threonine ...
متن کاملBacillus anthracis sortase A (SrtA) anchors LPXTG motif-containing surface proteins to the cell wall envelope.
Cell wall-anchored surface proteins of gram-positive pathogens play important roles during the establishment of many infectious diseases, but the contributions of surface proteins to the pathogenesis of anthrax have not yet been revealed. Cell wall anchoring in Staphylococcus aureus occurs by a transpeptidation mechanism requiring surface proteins with C-terminal sorting signals as well as sort...
متن کاملAnchoring of surface proteins to the cell wall of Staphylococcus aureus. Cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis.
Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with a LPXTG motif. Sortase cleaves polypeptides between the threonine and the glycine of the LPXTG motif. The carboxyl group of threonine is subsequently amide-linked to the amino group of peptidoglycan cross-bridges. The three-dimensional structure of sort...
متن کاملOn the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis.
Anchoring of Staphylococcus aureus surface protein to the cell wall is catalyzed by sortase, a transpeptidase. The contribution of staphylococcal surface proteins to establishment of infection was examined using a murine septic arthritis model. Intravenous inoculation of mice with the sortase-deficient mutant S. aureus strain SMK3 did not result in weight loss or severe septic arthritis, in con...
متن کاملDistribution of protein A on the surface of Staphylococcus aureus.
Surface proteins of Staphylococcus aureus fulfill many important roles during the pathogenesis of human infections and are anchored to the cell wall envelope by sortases. Although the chemical linkage of proteins to cell wall cross bridges is known, the mechanisms whereby polypeptides are distributed on the staphylococcal surface have not been revealed. We show here that protein A, the ligand o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 11 شماره
صفحات -
تاریخ انتشار 2001